Regulation of Epithelial Cell Morphology and Functions Approaching To More In Vivo-Like by Modifying Polyethylene Glycol on Polysulfone Membranes
نویسندگان
چکیده
Cytocompatibility is critically important in design of biomaterials for application in tissue engineering. However, the currently well-accepted "cytocompatible" biomaterials are those which promote cells to sustain good attachment/spreading. The cells on such materials usually lack the self-assembled cell morphology and high cell functions as in vivo. In our view, biomaterials that can promote the ability of cells to self-assemble and demonstrate cell-specific functions would be cytocompatible. This paper examined the interaction of polyethylene glycol (PEG) modified polysulfone (PSf) membranes with four epithelial cell types (primary liver cells, a liver tumor cell line, and two renal tubular cell lines). Our results show that PSf membranes modified with proper PEG promoted the aggregation of both liver and renal cells, but the liver cells more easily formed aggregates than the renal tubular cells. The culture on PEG-modified PSf membranes also enhanced cell-specific functions. In particular, the cells cultured on F127 membranes with the proper PEG content mimicked the in vivo ultrastructure of liver cells or renal tubules cells and displayed the highest cell functions. Gene expression data for adhesion proteins suggest that the PEG modification impaired cell-membrane interactions and increased cell-cell interactions, thus facilitating cell self-assembly. In conclusion, PEG-modified membrane could be a cytocompatible material which regulates the morphology and functions of epithelial cells in mimicking cell performance in vivo.
منابع مشابه
Fabrication of Nanofiltration Membrane from Polysulfone Ultrafiltration Membrane Via Photo olymerization
UV-induced grafting technique was used as a flexible method for surface modification of Polysulfone (PSf) ultrafiltration (UF) membranes in order to prepare hydrophilic nanofiltration (NF) membranes. Flat sheet Polysulfone (PSf) ultrafiltration membranes were prepared via phase inversion method. N-methylene-2-pyrrolidone (NMP) and polyethylene glycol (PEG) of three different molecular weights (...
متن کاملModification of polysulfone membranes with polyethylene glycol and lignosulfate: electrical characterization by impedance spectroscopy measurements.
Two sets of composite membranes having an asymmetric sulfonated polysulfone membrane as support layer have been obtained and electrically characterized (membranes SPS-PEG and PA-LIGS). The skin layer of the membrane SPS-PEG contains different percentages of polyethylene glycol in the casting solution (5, 25, 40, and 60 wt%), while lignosulfonate was used for manufacturing PA-LIGS membranes (5, ...
متن کاملInvestigation of ion transport and water content properties in anion exchange membranes based on polysulfone for solid alkaline fuel cell application
In present research work, homogeneous anion exchange membranes based on polysulfone (QAPSFs) were prepared via chloromethylation, amination and alkalization. In amination step, trimethylamine and N,N,N',N'-tetramethyl-1,6-hexanediamine were used as amination and crosslinking agents, respectively. The chloromethylated polysulfone was characterized by 1HNMR spectroscopy and chloromethylation degr...
متن کاملPreparation and Characterization of CA−PEG−TiO2 Membranes: Effect of PEG and TiO2 on Morphology, Flux and Fouling Performance
Modified cellulose acetate (CA) membranes were prepared by dissolving the polymers in a mixture of acetone (AC) and N, N dimethylacetamide (DMAc) (70:30) solvent and deionized (DI) water was used in the coagulation bath. The introduction of polyethylene glycol (PEG) additive and TiO2 nanoparticles (NPs) into the casting solution has changed the structures of the resulting membranes during the p...
متن کاملPoly (Vinylidene Fluride) Membrane Preparation and Characterization: Effects of Mixed Solvents and PEG Molecular Weight
In this study, polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc), which had different affinities with the nonsolvent (water). Properties of the prepared membranes were characterized using scanning electron microscope (SEM) and contact angle and membrane p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012